It's been some time since I updated my blog but today I got bored and reversed a very little crackme.
It is the BratAlarm "Just a little crackme" that I'm going to talk about.
It was a bit interesting in the sense that you need to have basic mathematics knowledge.
Basic maths knowledge
Complex numbers are used throughout the whole keygenme to generate the serial.
Complex number basic operations used are the following :
multiplication : (a, b) * (c, d) = (a*c - b*d, b*c + a*d) = (a + i*b) * (c + i*d)
addition : (a, b) + (c, d) = (a + c, b + d) = (a + i*b) + (c + i*d)
Where is the serial checking and generation located?
First of all, this keygenme wasn't packed nor obfuscated in any sort so it was pretty simple to find out
where the interesting parts are :
- API analysis : DialogBoxParamA
- Strings
Using these twos clues, we can extract the fact that everything happens in DialogFunc() and that it is using complex numbers.
How is the serial generated then?
First we need to know what's the serial pattern.
From the following disassembly :
We can safely say that the serial is of some form like that :
AAAAAAAA-BBBBBBBB-CCCCCCCC-DDDDDDDD
The serial is generated in many parts :
* Get username
* Generate serial
- Do a checksum of the string and use it to generate a real and imaginary part, you get Za
- Use some magic to generate a value for a second complex number, you get Zb
- Then we must resolve some equation to get the serial
These are the functions needed to create the serial :
- strsum() : a checksum using all the characters in a string
- str2num() : Convert hexdigit in ASCII to the number form
- gen_magic() : Generate some value using a magic number and the string
The checksum function :
The generation of first number C1 :
Magic happens!
Generation of C2 :
str2num()
Now going to check the serial generation part.
It is done in two routines :
* First routine
So we have this :
Za = SP2 + C3 * SP1 + C3 * C3
* Second routine
We obtain this :
Zb = (C1 + C3)*(C2 + C3)
Next the serial is checked as followed :
Za = Zb
SP2 + C3 * SP1 + C3 * C3 = (C1 + C3)*(C2 + C3)
SP2 + C3 * SP1 + C3 * C3 = C1 * C2 + C1 * C3 + C3 * C2 + C3 * C3
SP2 + C3 * SP1 + C3 * C3 = C1 * C2 + C3 * (C1 + C2) + C3 * C3
SP2 + C3 * SP1 = C1 * C2 + C3 * (C1 + C2)
Using identification, we can see that :
SP1 = C1 + C2
SP2 = C1 * C2
Here is the C source for the keygen :
We don't need to reconstruct source code from keygenme but here it is for those who didn't follow :
Hope you enjoyed reading this small tutorial.
Happy reversing,
m_101
- link : Just a Little Crackme
It is the BratAlarm "Just a little crackme" that I'm going to talk about.
It was a bit interesting in the sense that you need to have basic mathematics knowledge.
Basic maths knowledge
Complex numbers are used throughout the whole keygenme to generate the serial.
Complex number basic operations used are the following :
multiplication : (a, b) * (c, d) = (a*c - b*d, b*c + a*d) = (a + i*b) * (c + i*d)
addition : (a, b) + (c, d) = (a + c, b + d) = (a + i*b) + (c + i*d)
Where is the serial checking and generation located?
First of all, this keygenme wasn't packed nor obfuscated in any sort so it was pretty simple to find out
where the interesting parts are :
- API analysis : DialogBoxParamA
- Strings
Using these twos clues, we can extract the fact that everything happens in DialogFunc() and that it is using complex numbers.
How is the serial generated then?
First we need to know what's the serial pattern.
From the following disassembly :
.text:00401129 mov serial_part1_real, eax
.text:0040112E add edi, 9
.text:00401131 mov byte ptr [edi+8], 0
.text:00401135 push edi
.text:00401136 call str2num
.text:0040113B mov serial_part1_imaginary, eax
.text:00401140 add edi, 9
.text:00401143 mov byte ptr [edi+8], 0
.text:00401147 push edi
.text:00401148 call str2num
.text:0040114D mov serial_part2_real, eax
.text:00401152 add edi, 9
.text:00401155 mov byte ptr [edi+8], 0
.text:00401159 push edi
.text:0040115A call str2num
.text:0040115F mov serial_part2_imaginary, eax
We can safely say that the serial is of some form like that :
AAAAAAAA-BBBBBBBB-CCCCCCCC-DDDDDDDD
The serial is generated in many parts :
* Get username
* Generate serial
- Do a checksum of the string and use it to generate a real and imaginary part, you get Za
- Use some magic to generate a value for a second complex number, you get Zb
- Then we must resolve some equation to get the serial
These are the functions needed to create the serial :
- strsum() : a checksum using all the characters in a string
- str2num() : Convert hexdigit in ASCII to the number form
- gen_magic() : Generate some value using a magic number and the string
The checksum function :
.text:004010B5 strsum: ; CODE XREF: DialogFunc+91
.text:004010B5 mov dl, [esi]
.text:004010B7 add eax, edx
.text:004010B9 inc esi
.text:004010BA test edx, edx
.text:004010BC jnz short strsum
The generation of first number C1 :
.text:004010BE mov ComplexNumber1_real, eax ; Re(C1)
.text:004010C3 dec eax
.text:004010C4 imul eax, 3
.text:004010C7 mov ComplexNumber1_imaginary, eax ; Im(C1)
Magic happens!
.text:004010D8 gen_magic2: ; CODE XREF: DialogFunc+B7 j
.text:004010D8 mov dl, [esi]
.text:004010DA xor eax, edx
.text:004010DC rol eax, 5
.text:004010DF inc esi
.text:004010E0 test edx, edx
.text:004010E2 jnz short gen_magic2
Generation of C2 :
.text:004010E4 xor edx, edx
.text:004010E6 mov ecx, 7A69h
.text:004010EB div ecx
.text:004010ED mov ComplexNumber2_real, edx ; Re(C2)
.text:004010F3 and eax, 0FFFh
.text:004010F8 mov ComplexNumber2_imaginary, eax ; Im(C2)
str2num()
.text:004012C5 str2num proc near ; CODE XREF: DialogFunc+F9 p
.text:004012C5 ; DialogFunc+10B p ...
.text:004012C5
.text:004012C5 arg_0 = dword ptr 8
.text:004012C5
.text:004012C5 push ebp
.text:004012C6 mov ebp, esp
.text:004012C8 pusha
.text:004012C9 xor eax, eax
.text:004012CB xor edx, edx
.text:004012CD mov ecx, 8
.text:004012D2 mov esi, [ebp+arg_0]
.text:004012D5
.text:004012D5 loc_4012D5: ; CODE XREF: str2num+28 j
.text:004012D5 mov dl, [esi]
.text:004012D7 test dl, dl
.text:004012D9 jz short loc_4012EF
.text:004012DB sub dl, 30h ; '0'
.text:004012DE cmp dl, 0Ah
.text:004012E1 jb short loc_4012E6
.text:004012E3 sub dl, 7 ; hex digit part
.text:004012E6
.text:004012E6 loc_4012E6: ; CODE XREF: str2num+1C j
.text:004012E6 shl eax, 4
.text:004012E9 or eax, edx
.text:004012EB inc esi
.text:004012EC dec ecx
.text:004012ED jnz short loc_4012D5
.text:004012EF
.text:004012EF loc_4012EF: ; CODE XREF: str2num+14 j
.text:004012EF mov [ebp+arg_0], eax
.text:004012F2 popa
.text:004012F3 mov eax, [ebp+arg_0]
.text:004012F6 leave
.text:004012F7 retn 4
.text:004012F7 str2num endp
Now going to check the serial generation part.
It is done in two routines :
* First routine
.text:004011F1 gen_serial_part1 proc near ; CODE XREF: DialogFunc+15C
.text:004011F1
.text:004011F1 ComplexResult2 = byte ptr -10h
.text:004011F1 ComplexResult1 = byte ptr -8
.text:004011F1 ComplexResult = dword ptr 8
.text:004011F1 ComplexNumber = dword ptr 0Ch
.text:004011F1
.text:004011F1 push ebp
.text:004011F2 mov ebp, esp
.text:004011F4 add esp, 0FFFFFFF0h
.text:004011F7 pusha
.text:004011F8 mov edi, [ebp+ComplexResult]
.text:004011FB mov esi, [ebp+ComplexNumber]
.text:004011FE lea ebx, [ebp+ComplexResult1]
.text:00401201 lea ecx, [ebp+ComplexResult2]
.text:00401204 push esi
.text:00401205 push esi
.text:00401206 push ebx
.text:00401207 call complex_multiply
.text:0040120C push offset serial_part1_real
.text:00401211 push esi
.text:00401212 push ecx
.text:00401213 call complex_multiply
.text:00401218 push ecx
.text:00401219 push ebx
.text:0040121A push edi
.text:0040121B call complex_add
.text:00401220 push offset serial_part2_real
.text:00401225 push edi
.text:00401226 push edi
.text:00401227 call complex_add
.text:0040122C popa
.text:0040122D leave
.text:0040122E retn 8
.text:0040122E gen_serial_part1 endp
So we have this :
Za = SP2 + C3 * SP1 + C3 * C3
* Second routine
.text:00401231 gen_serial_part2 proc near ; CODE XREF: DialogFunc+16B
.text:00401231
.text:00401231 ComplexResult2 = byte ptr -10h
.text:00401231 ComplexResult1 = byte ptr -8
.text:00401231 ComplexResult = dword ptr 8
.text:00401231 ComplexNumber = dword ptr 0Ch
.text:00401231
.text:00401231 push ebp
.text:00401232 mov ebp, esp
.text:00401234 add esp, 0FFFFFFF0h
.text:00401237 pusha
.text:00401238 mov edi, [ebp+ComplexResult]
.text:0040123B mov esi, [ebp+ComplexNumber]
.text:0040123E lea ebx, [ebp+ComplexResult1]
.text:00401241 lea ecx, [ebp+ComplexResult2]
.text:00401244 push offset ComplexNumber1_real
.text:00401249 push esi
.text:0040124A push ebx
.text:0040124B call complex_add
.text:00401250 push offset ComplexNumber2_real
.text:00401255 push esi
.text:00401256 push ecx
.text:00401257 call complex_add
.text:0040125C push ecx
.text:0040125D push ebx
.text:0040125E push edi
.text:0040125F call complex_multiply
.text:00401264 popa
.text:00401265 leave
.text:00401266 retn 8
.text:00401266 gen_serial_part2 endp
We obtain this :
Zb = (C1 + C3)*(C2 + C3)
Next the serial is checked as followed :
Za = Zb
SP2 + C3 * SP1 + C3 * C3 = (C1 + C3)*(C2 + C3)
SP2 + C3 * SP1 + C3 * C3 = C1 * C2 + C1 * C3 + C3 * C2 + C3 * C3
SP2 + C3 * SP1 + C3 * C3 = C1 * C2 + C3 * (C1 + C2) + C3 * C3
SP2 + C3 * SP1 = C1 * C2 + C3 * (C1 + C2)
Using identification, we can see that :
SP1 = C1 + C2
SP2 = C1 * C2
Here is the C source for the keygen :
#include
#include
struct complex_t {
// real part
int real;
// imaginary part
int i;
};
// complex number multiplication
struct complex_t* complex_multiply (struct complex_t **result,
struct complex_t *complex1,
struct complex_t *complex2)
{
// check pointer validity
if (!result || !complex1 || !complex2)
return NULL;
// check pointer validity
if (!*result)
*result = malloc(sizeof(**result));
// we calculate the real part
(*result)->real = complex1->real * complex2->real - complex1->i * complex2->i;
// we calculate the imaginary part
(*result)->i = complex1->i * complex2->real + complex1->real * complex2->i;
// result = (a+bi)*(c+di) = (a*c - b*d) + (b*c + a*d)i
return *result;
}
// complex number addition
struct complex_t* complex_add (struct complex_t **result,
struct complex_t *complex1,
struct complex_t *complex2)
{
// check pointer validity
if (!result || !complex1 || !complex2)
return NULL;
// check pointer validity
if (!*result)
*result = malloc(sizeof(**result));
// we calculate the real part
(*result)->real = complex1->real + complex2->real;
// we calculate the imaginary part
(*result)->i = complex1->i + complex2->i;
// result = (a+bi)+(c+di) = (a+c) + (b+d)i
return *result;
}
unsigned int strsum (unsigned char *str, size_t len) {
size_t i;
int sum;
// check pointers
if (!str || !len)
return -1;
// sum
for (i = 0, sum = 0; *str && i < len; i++)
sum += str[i];
return sum;
}
unsigned int rol32 (unsigned int val, size_t shift) {
shift = shift % 32;
return (val << shift) | (val >> (32 - shift));
}
int gen_magic (unsigned char *str, size_t len) {
unsigned int magic = 0x12345678;
unsigned char byte;
// check pointers
if (!str || !len)
return -1;
// magic happen
do {
byte = *str;
magic ^= byte;
magic = rol32(magic, 5);
++str;
} while (byte);
return magic;
}
struct complex_t** keygen (unsigned char *name, size_t len) {
unsigned int magic;
struct complex_t c1, c2;
struct complex_t *s1 = NULL, *s2 = NULL, **serial;
// compute Za and Zb
c1.real = strsum(name, len);
c1.i = (c1.real - 1) * 3;
magic = gen_magic(name, len);
c2.real = magic % 0x7a69;
c2.i = (magic / 0x7a69) & 0xfff;
// compute serial part 1
s1 = complex_add (&s1, &c1, &c2);
// compute serial part 2
s2 = complex_multiply (&s2, &c1, &c2);
// show complex numbers
printf ("(a, b) : (%x, %x)\n", c1.real, c1.i);
printf ("(c, d) : (%x, %x)\n", c2.real, c2.i);
// show serial calculations
printf ("Serial part 1 = (a+c, b+d)\n");
printf ("Serial part 2 = (a*c - b*d, b*c + a*d)\n");
// show serial
printf ("serial : %08X-%08X-%08X-%08X\n", s1->real, s1->i, s2->real, s2->i);
return serial;
}
int main (int argc, char *argv[]) {
unsigned char *username;
username = calloc (1, 128);
// ask username
printf ("Please input username\n");
gets(username);
// show serial
keygen (username, 128);
return 0;
}
We don't need to reconstruct source code from keygenme but here it is for those who didn't follow :
// keygenme
int keygenme (unsigned char *name, size_t len) {
unsigned int magic;
struct complex_t *ctmp1 = NULL, *ctmp2 = NULL;
struct complex_t c1, c2, c3;
struct complex_t userserial_part1, userserial_part2;
struct complex_t *serial_part1 = NULL, *serial_part2 = NULL;
// part 1
//
c1.real = strsum (name, len);
c1.i = (c1.real - 1) * 3;
//
magic = gen_magic(name, len);
c2.real = magic % 0x7a69;
c2.i = (magic / 0x7a69) & 0xfff;
//
c3.real = 3;
c3.i = 0x4e1f;
//
userserial_part1.real = str2num(name, 8);
userserial_part1.i = str2num(name + 9, 8);
userserial_part2.real = str2num(name + 18, 8);
userserial_part2.i = str2num(name + 27, 8);
// we generate part 1
ctmp1 = complex_multiply (&ctmp1, &c3, &c3);
ctmp2 = complex_multiply (&ctmp2, &c3, &userserial_part1);
serial_part1 = complex_add (&serial_part1, ctmp1, ctmp2);
serial_part1 = complex_add (&serial_part1, serial_part1, &userserial_part2);
// we generate part 2
complex_add (&ctmp1, &c3, &c1);
complex_add (&ctmp2, &c3, &c2);
serial_part2 = complex_multiply (&serial_part2, ctmp2, ctmp1);
return 0;
}
Hope you enjoyed reading this small tutorial.
Happy reversing,
m_101
- link : Just a Little Crackme